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Localized states in polymeric molecules. IV. 
Polyacetylene beyond simple Hiickel Model* 

Celso P. de Melo, Humberto S. Brandi** and Altredo A. S. da Gama 
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We have used the transfer matrix technique to study the electronic structure 
of trans-polyacetylene, within a model Hamiltonian which includes second- 
neighbors interactions. The results show that the valence and conduction band 
widths and the energy of the localized state are dependent  on the strength 
of the second neighbors couplings. However ,  for the physically reasonable 
range of parameters ,  the electronic structure of the material  is only slightly 
modified, indicating that a simple H/ickel t reatment  is quite accurate for this 
system. 
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1. Introduction 

In the first paper  of this series [1], hereafter  referred to as I, the Transfer  Matrix 
(TM) formalism has been extended to deal with long range interactions in 
polymeric molecules. In that work, the method was restricted to a one-dimensional 
homogeneous system. However ,  it is well known that most of the 1-D polymers 
have structures which cannot be described by the model Hamiltonian used in I. 
This is, for instance, the case of polyacetylene (PA), one of the most studied 
polymers in the past few years for reasons which range f rom its simplicity for 
testing different band structure calculation schemes [2], to the existence of solitons 
in the t ra n s  form of this material [3]. 
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The convenience of using the TM approach to study 1-D systems has been 
extensively discussed in several previous works [4-6], and lies basically in its 
simplicity and in the possibility of obtaining analytical results for several quantities 
associated to the electronic structure of these systems. 

It is of interest to study the electronic structure of trans-polyacetylene using a 
model Hamiltonian which goes beyond first-neighbor interactions. Inclusion of 
second-neighbor interactions would provide an indication of the accuracy of a 
simple Hfickel (first neighbors only) model. In the present work the TM approach 
of I is extended to treat that system within a model Hamiltonian which includes 
first and second neighbors interactions. As shown be low,  this leads to simple 
analytical results for several physical quantities of interest. 

In Sect. 2 we apply the method to pure trans-PA. The inclusion of a single-site 
defect is treated in Sect. 3. We discuss the results and present our conclusions 
in Sect. 4. 

2. Pure trans-polyacetylene 

In this section we extend the method discussed in I to the specific case of a pure 
trans-PA chain (Fkg. 1), limiting, for simplicity, the range of interaction to first 
and second neighbors. The Hamiltonian in the site representation is written as 

H = Y~ eta~{al + ~. (Vl, ra~fat, + c.c..) (1) 
l l ,l '  

where l specifies the lattice site and a~{(at) is the creation (destruction) operator 
for the electronic orbital at site/. Eq. (1) is valid within the 7r-electron approxi- 
mation. 

Defining an arbitrary reference site / = 0 ,  the parameters appearing in (1) are 
chosen to be 

el=O, l=O,  4-1, +2 . . . .  (2) 

f 
-v1, l ' = l + ( - 1 )  t 

--V2, 1'= l - ( - 1 )  t 

vt, v = l' -v ,  = / + 2  

0, otherwise, 

(3) 
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Fig. 1, Regular 
acetylene chain 

trans-poly- 
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where -Vl  and -Vz represent the first neighbors couplings associated to single 
and double bonds, respectively. Due to the symmetry of the problem there is 
only one second neighbor coupling parameter,  -v .  

From the Green's  function associated to Eq. (1) 

G(E)  = (E  - H )  -1 = 1 (1 + HG) (4) 
ZB 

it is possible to obtain several properties of the system such as density of states, 
wavefunctions, etc. 

We may use Dyson's equation 

EG~,j( E ) = 6~,j + Y~ H~,kGk,j( E)  (5) k 
to obtain 

EGo,o =- 1 - v2G-l,0- VlGl,0- v(G-2,0 + G2,0) 

EGI,0 = - Vl Go,o - I ) 2  G2,0 - v ( G-l,0 + G3,0) 

EG2n,o = - v2n-l,0- vl G2n+l,0-1)(G2n-2,0 + G2n+2,0) 

EG2,,+I,0 = - VlG2,,o - v2G2n+2,0- v (G2,_1,0 + G2n+3,0) 

(6a) 

(6b) 

n -> 1 (6c) 

n -> 1. (6d) 

Due to the structure of Eqs. (6c) and (6d), and exact solution may be obtained 
for this infinite set of equations by introducing the following transfer functions 

T1 a2n+l  o = ' n-> 1 (7a) 
G2n.o 

G2n,o 
7"2 = n --- 1. (7b) 

G2n-l,O 

Through the use of Eqs. (7a) and (7b) in (6c) and (6d), it is easily shown that 
T1 and T2 satisfy the following algebraic equations 

E + V ( T - - ~ +  T1T2)+ 1)1T1+ 1)2/T2=0 (8a) 

E + V ( T - - ~ +  T1 T2)+191/TI+ 1)2T2 = 0. (8b) 

After solving this set of equations one gets 

l+ /3 t  
T~ - (9a) 

~-Fx 

t+~ 
7"2 = - - -  (9b) 8+X 
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where all parameters have been expressed in units of Vl, with/3 =-- v2/vl,  h - v~ vl, 
e = E~ vl and 

/3 x = + ( 1  +/32) (10a) 

t - -T~T2 ( ~ A A ) ~ / ( ~ A )  2 = + - 1 .  (10b) 

Among the four independent solutions of Eqs. (9) only two are associated to the 
retarded Green's function-those for which [t(e + i8) I < 1, where 8 is a small 
positive number. 

We can then solve Eqs. (6) for Go,o and obtain 

50,0 (11) 
Go,o = A 

where 

and 

AO, 0 

e + Ta + ;t Ti T2 0 

/3+AT~ 1 I+AT:  

A 0 e+/3T2+XT~T2 

(12a) 

l 
e+rl+xrlr2 3 ~ ] 

A= /3+1T1 e I+AT2 . (12b) 

x 1 e+/3r2+xr~r21 

The knowledge of Goo allows the calculation of the local density of states 

D ( E )  = l i m  G0.o. (13) 
7r 

As discussed in I the structure of the local density of states is dependent on the 
second neighbor coupling strength. For the case of interest /3> 1 and 

, I  

Z, 
i 

11 / 

i ~ 1 / 

q 

- 5 - 2  - ! 0 I 2 5 E / V ,  

Fig. 2. Local density of states for regular trans-polyacetylene. We have used fl = 1.32, and A = 0.07 
and 0.17 (continuous and dashed curves respectively) 
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A<0.25- th i s  leads to two bands in the energy regions defined by 
e = [ - 2 A - ( 1 + / 3 ) ,  2 A - ( f l - 1 ) ]  and e =[2A +( /3-1) ,  -2A +(1 +/3)]. 

One should note that the simple Hiickel results are obtained letting A go to zero, 
and therefore, the inclusion of second neighbor interactions does not modify 
neither the band width nor the gap width given by that simpler model. However 
the relative widths of the lower and upper bands are A dependent. 

This can be seen in Fig. 2 where the local density of states is depicted for/3 = 1.32 
and reasonable values of A. 

3 .  S i n g l e - s i t e  d e f e c t  

Recently it has been suggested [3] that the great increase in the conductivity of 
trans-PA, resulting from doping, may be explained by a mechanism of solitons 
associated to the presence of mobile defects in the undoped material. Such defects 
are a consequence of the breaking of the regular bond alternation during the 
polymerization process. Due to the very small barrier-estimated to be 
-0 .02 e V -  for the displacement of the center of the defect to the neighboring 
sites, the defect is expected to be extremely mobile along the chain, By the effect 
of doping, charge can be transferred to or from the localized (in energy) middle 
gap state associated to the presence of the defect, thus providing an explanation 
to the observed [7] huge increase in conductivity. 

Although geometrically these defects may extend over several sites [3, 6], a single 
site defect model (Fig. 3) may lead to very good results concerning the electronic 
properties of the system [5]. In this Section we use the formalism developed in 
the previous one, to treat such defect. For convenience we assume that the 
breaking in the bond alternation occurs at site 0, therefore, only one new 

__~)l. parameter is introduced in the calculation, namely, the coupling V-l,1 = This 
leads to the following set of equations for the matrix elements of the Green's 
function associated to the defect site 

EGo,o = 1 - 2vl Gx,0- 2vG2,o (14a) 

EGI,o = -v '  G-l,o- vl Go,o- vzG2,o- vG3,o. (14b) 

For the other sites the elements are given by Eqs. (6c) and (6d), and therefore 
the transfer functions are the same as given by Eqs. (9a) and (9b). As a 
consequence, the band regions are the same as in the pure case, and the new 
local density of states is obtained after solving Eq. (14a) and (14b) for G0,0, 

Fig. 3. Trans-polyacetylene 
chain with a single-site defect 
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resulting in 

6~0 
Go,o = A' ' 

where 

I _ _  

AO, 0 - -  

and 

A t = 

e+At+flT2 0 a' 

I+AT2 1 1+AT2 

A' 0 e+At+BT2 

e+At+flT2 1 a' 

I+AT2 e I+AT2 

A ' 1 e + At + flT2 

C. P. de Melo et al. 

(15) 

(16a) 

(16b) 

with A'= v'/v2. 

The poles of Go0 correspond to the energy of the symmetric localized state 
associated to the defect and are easily obtained finding the zeros of A~,0. For the 
case where only first neighbors interactions are considered, there is only one pole 
at the middle gap, regardless of the extension of the defect. The weight of this 
pole may be obtained from the residue of Go,o at the pole's position, having 
equal contribution from the valence and conduction density of states. 

If one considers second neighbors interactions this symmetry can be broken and 
the pole's position is not necessarily exactly in the middle of the gap (see Table 
1). In order to have equal contributions from the valence and conduction bands 
to the weight of the localized state, we have found that, for the values of 
parameters appropriate for trans-PA, is necessary for A' to be greater than A 
(See Table 2). Physically, this implies that the second neighbor interaction at 
the defect region must be stronger than in the regular chain-as would result 
from the existence of a kink at the defect site. 

In Fig. 4 we present the local density of states for the site where the defect is 
centered, for different sets of values of the parameters which lead to equal 
integrals of the density of valence and conduction states. 

Table 1. Energy  separation (7/) of the localized state position (e 0) 
from the middle of the  gap (2A), in units of v 1. W e  define r /=  2A - e o 
and take A' = A 

f l ~  0.08 0.10 0.12 0.14 

1.2 0.003 0.003 0.004 0.005 

1.3 0.006 0.007 0.008 0.010 

1.4 0.009 0.011 0.014 0.016 

1.5 0.013 0.016 0.019 0.023 
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Table 2. Values of A' which lead to equal integrals lo0 
of the local density of states of the valence and conduc- 
tion bands, for different values of A, and/3 = 1.32. Also 
shown is the energy separation of the pole to the middle 
of the gap, ~/= (2A - %) 

x'l;t 1oo n 

0.08 2,32 0,36 0.006 
0.I0 2.32 0.36 0.008 
0.12 2.16 0.36 0.010 
0.14 2.05 0.35 0.012 
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Fig. 4. Local density of states for ;t =0.08; A'=0.14 (continuous) and A =0.14; X'=0.29 (dashed 
curve). For both cases,/3 = 1.32 

The wave function for the localized state may be obtained as in Ref. [5-6], 
evaluating the off-diagonal elements of the Green's  function, which are easily 
obtained from the values of T1 and 7"2 at the pole's position. The results are very 
similar to those of Ref. [5], except for the fact that the wavefunction does not 
vanish at the odd sites, although at these sites its value is very close to zero. 

4. Discussions and conclusions 

The results obtained in the present work concerning the density of states and 
the pole's position, as well as the wavefunction associated to the localized energy 
state, indicate that the simple Hfickel model quite accurately describes the 
electronic structure of trans-polyacetylene, which is only slightly modified by the 
inclusion of second-neighbors interactions. Of course this conclusion is dependent 
on the strengths considered for the relevant parameters. They could be obtained 
from the experiments with the knowledge of the total band width, the band gap 
and the valence (or conduction) band width. 

Unfortunately, in the literature there are no conclusive experimental data con- 
cerning the total ~-band width, and the analysis of the results for the lower band 
density of states is complicated due to the overlap of or and ~ bands [8]. Even 
for the band gap there is difficulty for a precise assignment [9]. We have used 
the most accepted value of t8 and chosen a reasonable range of variation for the 
parameter A. 
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A s  shown in the  p re sen t  work  the  T M  a p p r o a c h  is still  conven ien t  to  t r ea t  systems 
l ike  P A  with in t e rac t ions  o t h e r  than  first ne ighbors .  A na ly t i c a l  so lu t ions  were  
o b t a i n e d  when  the  coupl ing  range  was l imi ted  to  second-ne ighbors .  This is not ,  
howeve r ,  a res t r i c t ion  of the  me thod ,  which can be  t r ivial ly  e x t e n d e d  to inc lude  
h igher  o r d e r  coupl ings.  

This ser ies  of works  shows tha t  the re  exists a la rge  va r ie ty  of 1 -D systems which 
can be conven ien t ly  t r e a t e d  within the  f r a m e w o r k  of the  Trans fe r  Ma t r i x  me thod .  
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